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Introduction

Introduction
Physical setup

Polyakov loop:

P(~x) = Tr P e−
∫ 1/T

0 dx0A0(x0,~x)

order parameter for confinement in pure gauge theories

L = 1
T

~x

q

~x + ~R

q̄

〈P(~x)〉

{
0 T ≤ Tc

6= 0 T > Tc

For two static (Mq,Mq̄ →∞) charges

〈P†(~x)P(~x)〉 = e−LV (R)

Confinement : V (R)→R→∞ σR, σ string tension

For some unknown reason, the dominant configurations in the presence of distant
charges are those in which the flux lines form a thin tube.

We describe the dynamics of the flux tube (at T ∼ 0) in order to describe the low
energy regime of the theory in the confining phase.
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Introduction

Introduction
Effective String Theory

Why study an effective theory of strings?

Many other examples of stable string-like objects in field theory.

Strong constraints from symmetry: effective string theories much more predictive
than other effective theories in particle physics (universal behaviour).

In the case of the confining string: deviations from the universal behaviour could be a
signature of the true theory of the QCD string!

Assumptions:

The field theory in D euclidean spacetime dimensions has a mass gap.

No string breaking effects.
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Effective String Theory

Effective String Theory
Spacetime symmetry and string formation

The flux tube formation breaks some of the spacetime symmetries of the underlying field
theory.

Goldstone’s theorem

Given a field theory with an internal symmetry group G , broken to a stability group H,
there are

dimG − dimH

massless modes in that ground state. One for each broken generator.

From the breaking pattern

ISO(D)→ SO(D − 2)× ISO(2),

we expect 3(D − 2) Goldstone modes. However, we use the (D − 2) transversal
displacements of the string only!

We cannot naively apply Goldstone’s theorem to broken spacetime symmetries!
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Effective String Theory

Effective String Theory
Spacetime symmetry and string formation

In the case of broken spacetime symmetries, the number of independent massless modes
is reduced by the number nx of vanishing linear combinations of transformations1

dimG − dimH − nx .

ca(r)T a〈φ(r)〉 = 0,

ca(r) unknown function, T a broken generator, 〈φ(r)〉
order parameter.

In the case of the effective string, those are the (D − 2) transversal displacements w.r.t
its straight equilibrium position

X i = X i (ξ0, ξ1), i = 1, · · · ,D − 2..

1(Low and Manohar, 2002)
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Effective String Theory

Effective String Theory
Massless worldsheet excitations

To preserve the stability group, the action must be built with contracted products of ∂αXi

∂αX · ∂αX , ∂αX · ∂βX ∂αX · ∂βX , · · ·

and is a derivative expansion

Seff = σRL +
σ

2

∫
d2ξ

[
(∂αX · ∂αX ) + c2 (∂αX · ∂αX )2 + c3 (∂αX · ∂βX )2 + · · ·

]
+ Sb

with

Sb =

∫
dξ0

[
b1(∂1X · ∂1X ) + b2(∂1∂0X · ∂1∂0X ) + b3(∂1X · ∂1X )2 + · · ·

]
the boundary contribution. A rescaling ξ0 → ξ0R, ξ1 → ξ1L and Xi → Xi/

√
σ shows that

S is actually a long string expansion in powers of (σRL)−1.
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Effective String Theory

Effective String Theory
Non linear realization of symmetries

Even if the system lies in a broken ground state, Poincaré symmetry must still be present
in the action. The symmetry of the remaining 2(D − 2) generators is realized in a
non-linear manner2. For a rotation involving the directions b and j

δjεbXi = ε
(
−δji − X j∂bXi

)
The terms of the long string expansion mix up under this transformation.

The mixing only involves terms with equal weight

W = n(derivatives)− n(fields).

The imposition of Poincaré symmetry

δεS = 0

generates recurrence relations among the {ci} and the {bi} and the number of free
parameters is greatly reduceda!

a(Gliozzi, 2011)

2(Meyer, 2006)
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Effective String Theory

Effective String Theory
Classification of allowed terms

The allowed terms can be classified according to their weight.

W = 0:

SNG = σ

∫
d2ξ
√

h , h = det(hab) = det (∂aX · ∂bX ) .

W = 2:

S2,R = γ

∫
d2ξ
√

h R , S2,K = α

∫
d2ξ
√

h K 2 ,

with K = ∆(h)X extrinsic curvature, R Ricci scalar.

Both can be neglected at the classical level3:
- In D=3, R is a topological invariant.
- K is proportional to the weight 0 equation of motion.

W = 4,

S4,R = γ2

∫
d2ξ
√

hR2 , · · ·

3(Aharony and Field, 2011)
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Effective String Theory

Effective String Theory
The reparametrization invariant approach

The same results can be obtained with a reparametrization invariant approach:

Xµ :M→ RD , µ = 0, 1, · · · ,D − 1

with M worldsheet of the string, parametrized by ξ0, ξ1, RD target space of the gauge
theory.
We require:

Poincaré invariance acting on Xµ.

Reparametrization invariance over M.

Terms of the derivative expansion are geometrical invariants built from the natural
geometrical objects we can define on M

hab = ∂aXµ∂bXµ, Ωµac = ∇c∂aXµ

where ∇c is the covariant derivative induced on M by hab. The previous approach can
be obtained by fixing the gauge

X0 = ξ0, X1 = ξ1, physical gauge
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Effective String Theory

Effective String Theory
Summary and a new proposal

In both approaches:

The contribution from first order terms of the action coincide with NG4.

The first allowed deviations from NG in D = 3 appear at order O(R−7).

However, deviations much stronger than O(R−7) are observed:

SU(N) excited string spectrum5.

3D Ising model ground state potential6.

Interquark potential of U(1) lattice gauge theory in 3D7.

Our proposal

The contribution from weight 2 terms vanishes at tree level, but may contribute at
1-loop!

4(Aharony and Field, 2011)
5(Athenodorou et al., 2007)
6(Caselle et al., 2003)
7(Caselle et al., 2014)
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Effective String Theory

The Rigid String
The static interquark potential

Our proposal

The contribution from weight 2 terms vanishes at tree level, but may contribute at
1-loop!

V (R) = lim
L→∞

1

L
log

∫
[DX ]e−Seff[X ],

Up to order O(1/R4) in V (R, L)

Seff = SNG + S2,K + Sb

with

SNG ' σRL +
σ

2

∫
d2ξ

[
∂αX · ∂αX − 1

4
∂αX · ∂αX 2

]
(1)

S2,K ' α
∫

d2ξ (∆X )2 , Sb ' b2

∫
dξ0 [∂1∂0X · ∂1∂0X ] (2)

At the gaussian level, neglecting the boundary contribution

Seff = σRL +
σ

2

∫
d2ξ (∂αX · ∂αX ) + α

∫
d2ξ (∆X )2
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Effective String Theory

The Rigid String
Field transformations

SR = σ

∫
d2ξ

[
1 +

1

2
X

(
1− 1

m2
∆

)
(−∆)X

]
, m =

√
σ

2α

The field transformation

X ′ (ξ0, ξ1) =

(
1− 1

m2
∆

)1/2

X (ξ0, ξ1)

takes the action back to non-rigid gaussian form,

Sgauss = σ

∫
d2ξ

[
1− 1

2
X ∆X

]
+ O

(α
σ

)2

,

and

V (R) = σR +
1

2L
Tr log (−∆)RxL = σR − π

24R
,

where the singular operator trace can be evaluated with the zeta function regularization
method.

Davide Vadacchino (UniTo) Rigid strings on the lattice February 13, 2015 12 / 29



Effective String Theory

The Rigid String
The static interquark potential

However, we must take into account the functional determinant of the transformation∫
[DX ] exp(−SR) = det

(
1− 1

m2
∆

)−1/2

RxL

∫ [
DX ′

]
exp(−Sgauss),

we obtain

V (R) = lim
L→∞

σR +
1

2L
Tr log (−∆)RxL︸ ︷︷ ︸

VNG (R)

+
1

2L
Tr log

(
1− 1

m2
∆

)
RxL︸ ︷︷ ︸

Vr (R)

 ,
where

VNG (R) = − π

12R
, Vr (R) = − m

2π

∞∑
n=1

K1(2nmR)

n

where Kα are modified Bessel functions of the second kind.
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Effective String Theory

The Rigid String
Properties of the rigidity contribution

Vr (R) = − m

2π

∞∑
n=1

K1(2nmR)

n

Has a logarithmic branching point at R = 0.

Square root singularities for negative values of (mR)2, the first of which at
(mR)2 = −π2 corresponding to the convergence radius of the low mR expansion

Vr (R) = − π

24R
+

m

4
+

m2R

4π

(
log

mR

2π
+ γE −

1

2

)
+

+
m2R

2π

∞∑
n=1

Γ(3/2)ζ(2n + 1)

Γ(n + 2)Γ(n − 1/2)

(
mR

π

)2n

Large mR behaviour,

Vr (R) =

√
m

16πR
e−2mR , R � 1

m
.
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Numerical Results Definition

The U(1) Lattice gauge theory in 3D
Definition

On a 3D euclidean spacetime lattice Λ (spacing a),

S = β
∑
x∈Λ

∑
1≤µ<ν≤3

[1− cosϑx,µν ] , β =
1

ae2
, ϑµ ∈ (−π, π] ,

with
ϑx,µν = ∆µϑx,ν −∆νϑx,µ.

Using discrete forms notation

Z =
∏
c1

∫ π

−π
d(ϑ) e−β

∑
c2

(1−cos dϑ)
, ci : i simplices

where ϑ is a 1-chain, dϑ is a 2-chain and we get rid of the indices.
If (β � 1), taking the periodicity of S in ϑ into account

Z = ZswZtop = Zsw

∑
{q}

e−2π2β(q,∆−1q)

where Ztop describes topological excitations, Zsw describes spin-waves.
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Numerical Results Main properties

The U(1) Lattice gauge theory in 3D
Main properties

In the semiclassical approximation8

m0 = c0

√
8π2βe−π

2βv(0), σ ≥ cσ√
2π2β

e−π
2βv(0), v(0) = 0.2527

The model is always in the confined phase in 3D, the bounds are saturated and
semiclassically

cσ = 8, c0 = 1

The ratio
m0√
σ

=
2πc0√

cσ
(2πβ)3/4e−π

2v(0)β/2,

can be tuned at will by an appropriate choice of β, in contrast to the general
Yang-Mills case.

8(Göpfert and Mack, 1981, Polyakov, 1977)
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Numerical Results Dual Formulation

The U(1) Lattice gauge theory in 3D
The dual formulation of the model9

Each plaquette factor in Z is periodic in ϑ

e−β(1−cos dϑ) =
∞∑

k=−∞

e−βI|k|(β)eık dϑ, Iα Bessel functions of order α

integration in d(ϑ) yelds the constraint on each lattice plaquette

δk = 0

The constraint is easily solved by defining an integer valued ?l on the dual lattice
such that

?k = d?l ,

We obtain a globally Z symmetric spin model

Z = e−βNl

{∞}∑
{? l=−∞}

∏
?c1

I| d? l|(β), ?c1 dual links.

9(Savit, 1980)
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Numerical Results Dual Formulation

The U(1) Lattice gauge theory in 3D
The dual model - Insight in the confinement mechanism and Gauge/String duality

Condensation of magnetic monopoles (pointlike in 3D, monopole rings in 4D) drives
confinement!

A string theory should describe the behaviour of Faraday flux lines connecting the
sources, but this gauge/string duality is missing in the general case.

In the U(1) LGT, however, an heuristic proof exists10

SPol = c1e2m0

∫
d2ξ
√

g + c2
e2

m0

∫
d2ξ
√

gK 2

where c1 and c2 are two undetermined constants. If c1 = σ and c2 = 2α then√
σ/2α = m ∼ m0 .

and the rigidity correction is dominant in the continuum limit.

10(Polyakov, 1997)
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Numerical Results Dual Formulation

The U(1) Lattice gauge theory in 3D
Inclusion of Polyakov lines in the partition function

In the dual formulation, sources of the gauge field are easily included in Z

ZR =
∏
c1

∫ π

−π
dϑ e−β

∑
c2

(1−cos dϑ)
∏
L+

eıϑ
∏
L−

e−ıϑ

Lt

x

L+

x + R

L−
ZR = e−βNl

{∞}∑
{? l=−∞}

∏
?c1

I| d? l+?n|(β)

where ?n is an integer valued dual 1-chain which is
nonvanishing only on the links dual to the green surface.

Thus

G(R) = 〈P?(R)P(0)〉 =
ZR

Z
(= e−LV (R)),

Overlap problem: exponentially decaying signal-to-noise ratio!
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Numerical Results Dual Formulation

Numericals
Evaluation of the interquark potential

Using the snake algorithm11...

L R

R + 1

G(R + 1)

G(R)
=

ZR+1

ZR
=

ZR+1

ZNt−1
R

ZNt−1
R

ZNt−2
R

· · · Z 1
R

ZR

where
ZNt−i+1
R

ZNt−i
R

=

〈
I| d∗ l+1|(β)

I| d∗ l|(β)

〉
R,Nt−i

are Nt independent local observables.

...and hierarchical lattice updates..

Whole lattice sweeps are a waste of computer time: we
perform hierarchical lattice updates.

We obtain high precision numerical estimates of

G(R + 1)

G(R)
= e−L(V (R+1)−V (R))

11(de Forcrand et al., 2001)
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Numerical Results Numerical Results

Deviations from NG
Computational setup

We measured the quantity

Q(R) = V (R + 1)− V (R) = − 1

Nt
log

(
G(R + 1)

G(R)

)
in the range 1/

√
σ < R < Nt/2 for several values of β, on lattices L2xNt ranging from

L = Nt = 64 to L = Nt = 128.
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Numerical Results Numerical Results

Deviations from NG
Preliminary results

The data was fitted asymptotically with

QNG (R) = σ

(√
(R + 1)2 − π

12σ
−
√

R2 − π

12σ

)
,

using σ as free parameter.

β σa2 L,Nt 1/
√
σ Rmin

1.7 0.122764(2) 64 3a 17a
1.9 0.066824(6) 64 4a 11a
2.0 0.049364(2) 64 5a 20a
2.2 0.027322(2) 64 6a 26a
2.4 0.015456(7) 128 8a 34a

At low β, NG describes the
data for a wide range of
interquark distances

As β grows, the deviation from
the prediction of NG grows: at
β = 2.2 only 6 degrees of
freedom!

Deviations should be detectable in the range [a/
√
σ,Rmina]
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Numerical Results Numerical Results

Deviations with respect to NG

1 2 3 4 5 6
R
√
σ

0.0000

0.0001

0.0002

0.0003

0.0004

0.0005

(Q
(R

)−
Q
N
G
(R

))
a

Figure: β = 2.2, L = Nt = 64a, σa2 = 0.027322(2)

Davide Vadacchino (UniTo) Rigid strings on the lattice February 13, 2015 23 / 29



Numerical Results Numerical Results

Deviations with respect to NG
Boundary and rigidity terms

The boundary correction

Qb(R) = −b2π
3

60

(
1

(R + 1)4
− 1

R4

)
doesn’t describe the deviations:

χ2
R ∼ 1 only for very large values of Rmin

√
σ.

The best fit values of b2 have the wrong scaling behaviour!

Fitting with the rigidity correction

Qr (R) = − m

2π

∞∑
n=1

K1(2nm(R + 1))− K1(2nmR)

n
, m =

√
σ

2α

or at next to leading order

Q ′r (R) = Qr (R) +
21

20mσ

( π
24

)2
(

1

(R + 1)4
− 1

R4

)
works much better!
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Numerical Results Numerical Results

Determination of ma
At NLO...

Fits of Q(R) with

Q(R) = QNG (R) + Qr (R) + Q ′r (R) + Qb(R)

using σ, m and b2 as free parameters:

β ma m0a m/m0

1.7 0.28(9) 0.88(1) 0.32(10)
1.9 0.25(4) 0.56(1) 0.45(7)
2.0 0.17(2) 0.44(1) 0.39(4)
2.2 0.11(1) 0.27(1) 0.41(4)
2.4 0.06(2) 0.20(1) 0.30(10)

Takes into account the interplay between σ, m, and b2 in the error.

m scales with m0 as predicted by Polyakov.
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Numerical Results Numerical Results

1 2 3 4 5
R
√
σ

0.028

0.029

0.030

0.031

Q
(R

)a

NG, χ 2
r =0.91, Rmin

√
σ=4.3

Lüscher

NG+VE , χ
2
r =1.04, Rmin

√
σ=2.15

NG+VE +V ′2 , χ
2
r =1.2, Rmin

√
σ=1.82

β=2.2

Keeping into account the above analysis, our estimate of the rigidity parameter is

m/m0 = 0.35(10) .

Davide Vadacchino (UniTo) Rigid strings on the lattice February 13, 2015 26 / 29



Numerical Results Numerical Results

Conclusions and Future directions

At 1-loop, the rigidity term cannot be neglected and is in fact essential in order to
explain numerical data.

As predicted by Polyakov, the rigidity parameter m scales with m0.
- The rigidity correction becomes dominant in the limit β → ∞: different with respect

to YM and Abelian Higgs Model.
- the U(1) model is a perfect laboratory to study the crossover from NG to a rigid string.

More precise data (or interface free energy) could allow to disentangle boundary and
next-order rigidity contribution.

String broadening behaviour should deviate with respect to NG predicted behaviour:
we expect a rigid string to have a constant width at varying sources separation.

Davide Vadacchino (UniTo) Rigid strings on the lattice February 13, 2015 27 / 29



Numerical Results Numerical Results

Bibliography I

Ofer Aharony and Matan Field. On the effective theory of long open strings. JHEP,
1101:065, 2011. doi: 10.1007/JHEP01(2011)065.

Andreas Athenodorou, Barak Bringoltz, and Michael Teper. The closed string spectrum
of SU(N) gauge theories in 2+1 dimensions. Phys. Lett., B656:132–140, 2007. doi:
10.1016/j.physletb.2007.09.045.

Michele Caselle, Martin Hasenbusch, and Marco Panero. String effects in the 3-d gauge
Ising model. JHEP, 0301:057, 2003.

Michele Caselle, Marco Panero, Roberto Pellegrini, and Davide Vadacchino. A different
kind of string. 2014.

Philippe de Forcrand, Massimo D’Elia, and Michele Pepe. A Study of the ’t Hooft loop
in SU(2) Yang-Mills theory. Phys. Rev. Lett., 86:1438, 2001. doi:
10.1103/PhysRevLett.86.1438.

F. Gliozzi. Dirac-Born-Infeld action from spontaneous breakdown of Lorentz symmetry in
brane-world scenarios. Phys. Rev., D84:027702, 2011. doi:
10.1103/PhysRevD.84.027702.

Davide Vadacchino (UniTo) Rigid strings on the lattice February 13, 2015 28 / 29



Numerical Results Numerical Results

Bibliography II
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