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m lon Beam Analysis Techniques - IBA

Main Features

v’ Quantitative multi-elemental analysis
v High sensitivity (1-100 ppm in at/cm3)
v’ Depth profiling (1-10* nm)

v No invasive analysis

v No sample preparation

v’ Micro-spectroscopy (resolution pum)

v’ Compositional analysis
v’ Structural analysis
v’ Functional analysis (electronic devices)
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IBA-RBS

(RBS is an ion scattering technique that is
used for the surface layer analysis of solids.

A target is bombarded with ions at an energy
in the MeV-range (0.5 — 4 MeV)

dThe energy of the backscattered projectiles
is recorded with an energy sensitive detector,
typically a solid state detector.

(JRBS allows the quantitative determination of
the composition of a material and depth
profiling of individual elements.

03/05/2017

Response = Backscattered lons

Rutherford Backscattering Spectrometry (RBS)

[ quantitative without the need for
reference samples,

[ nondestructive,

[ has a good depth resolution of the order of
several nm,

1 and a very good sensitivity for heavy
elements of the order of parts-per-million

(ppm).
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IBA-RBS
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IBA-RBS Classical Scattering theory
Scattered ion

Fraction of the ion energy which remains with the ion after the collision; E_, = E; -K(0,) Z,,M,,E
Kinematic factor K(6;); O scattering angle.
Energy of the recoil nucleus: E . ;=(1-K(6)) - E;,

out

Elastic collisions

\es

TARGET MASS DISCRIMINATION t
] i Target recoil

Incident ion Z,,M,,E,_.

Zl Y Ml ’ Ein
From the conservation of ( 2

d tum, i M, \° M \
energy and momentum, in _(M1\T o2 Mq)
non-relativistic form and in E,y - 1 (Mz) Sin (95) T (Mz) COS(BS) ,
the laboratory reference K(Bg) = —— =
frame: Ein 1+ M,
\ M, J

K(O;) depends only on the scattering angle and the ratio of masses of the ion and the atomic nucleus.
It does not depend on the ion energy
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IBA-RBS

03/05/2017
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The signal from an atom at the sample surface will appear in the energy
t t ition E_ ,.=K-E.
spectrum at a position out="in TARGET MASS DISCRIMINATION
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DEPTH SCALE

The signal from atoms of the same mass below the sample
surface will be shifted by the amount of energy lost while

the projectiles pass through the sample, both before AE,,

and after AE_, collision

Entry ion energy = Ej,

dx

dE dE
Energy loss before scattering = AE;,= (E) - Ax |:> Energy before scattering = E,= E;;, — <—> - Ax

Kinematic loss = AEs =

dE Ax
Energy loss after scattering = E ;= <—> " oS @ )IZ> Output energy = E, ;= K - E, (dx)
S

bﬁo\""
O
)/
AEg \ Y /
AEin
* —
AX

in

(1-K)-E, E) Energy after scattering = K - E,

Ax
s cos(¥Ys)

dx
out
<ot

(@)

cos(ﬁg)] +Ax

Eour = K - Eip — [K (Zi) +

in

The output energy depends on the nuclear scattering through the kinematic

factor K (Mass Discrimination) and on the depth at which the scattering took
place (Depth Profile).



IBA-RBS

O
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IBA-RBS Scattering cross section

The yield of scattered particle is calculated using the e? Z7,-7, 2 1 M, 2
differential scattering cross section which is given by O (Bs) = [ ] . —2 ( )
Rutherford’s formula: )

0,=30°

oo
|

(o))
|

Scattering cross section (barn)
N
|

N
|

6,=179.5°
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IBA-RBS

Seowae  worwazone |
POSITION MASS Kinemati factor

dyY WIDTH THICKNESS/DEPTH Stopping Power
HEIGHT QUANTITY Cross Section

dE

www.slideshare.net/max0068/chiari-lezione-su-rutherford-backscattering-spectrometry-rsb-2012
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IBA-RBS

425 nm

225 nm

ppettri simulati di un campione di S10, bombardato con particelle a da 2 MeV, 6 = 150°

03/05/2017 E. Vittone: lon Beam Based Techniques for Materials Science



IBA-RBS
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IBA-RBS

Particle detector
6
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IBA-RBS
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IBA-RBS

When the collision diameter is
very small and becomes
comparable to the sum of the
nuclear radii of the projectile
and the target atom, the finite
sizes of the nuclei and the
nuclear force interactions lead
to deviations from the
Rutherford scattering cross
section.

For MeV ion beams, this
phenomenon can be observed
in low Z projectile/target system
where the Coulomb barrier is
small.
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IBA-RBS

Main features of RBS

Elements

Be - U

Standard Conditions

2 Mev ‘He beam
Silicon detector
10 minutes per sample

Precision Stoichiometry: < 1% relative
Thickness: < 5%
Sensitivity Bulk: % to 10™, depending on Z

Surface: 1 to 10 Monolayers

Depth Resolution

I to 10 nm

Data analysis

e.g. by RUMP software: http://www.genplot.com/

Remarks

Accessible depth range ~ Ium
No light elements detectable on heavy substrates

http://cas.web.cern.ch/cas/Pruhonice/PDF/Doebeli.pdf
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Response = Recoil

Elastic Recoil Detection Analysis

If light elements in heavy substrates or elements lighter than
the incident beam particles have to be analysed (e.g. hydrogen
profiling) the recoiling target atoms can be detected in a

grazing angle geometry

03/05/2017 E. Vittone: lon Beam Based Techniques for Materials Science
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IBA-ERD

Sample
Collimators
Beam
z, My, Ey I ‘ _ |
—‘l—- ‘ Stopping Foil

o M
Stopping foil used to stop Electronics

scattered primary ions Detector ‘EL

NS

do ZZe'\ (M, ] -1
E*' E, ||M;" | cos b Energy of Recoiled lons

-

Detect recoils with mass less
than that of the incident
projectile ions

K = 4M;M; cos® ¢
M, + Myy*

Number of Recoiled lons

Iva Bogranovic, NIS Colloquium, Torino, 22 December, 2008
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Time-of-flight ERDA

IBA-ERD

AT=T,-T,=L(M, /2E,)"/>
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IBA-ERD l E Ruder Boskovi¢ Institute

TOF-E map of multilayered AIN(20nm)/TiN(40nm) film

1000 ————.. 60
]|
800 -
Il 40
o 5
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Z
=
400 5 <
200t _
T T T T T T T T s 0
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E

http://www.irb.hr/eng/Research/Divisions/Division-of-Experimental-Physics/Laboratory-for-ion-beam-interactions/TOF-ERDA
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D. Gracin, Z. Siketi¢, K. Jurai¢, M. Ceh

IBA-ERD

resolution electron microscopy

Applied Surface Science, Volume 275, 2013, 19-22
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Fig. 6. TOF-ERDA coincidence map of the a-nc-Si:H sample (as deposited).
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IBA-ERD

Main features of EEDA

Elements

H - U (Mamly applied for hydrogen)

Standard Conditions

~100 MeV heavy 1on beam

(2 MeV “He beam for hydrogen detection)
TOF. magnetic. gas 1onisation detector

10 minutes per sample

Precision Stoichiometry: 1% relative
Thickness: < 5%

Sensitivity Bulk: % to 10~ . depending on Z

Depth Resolution 1 to 10 nm

Remarks Simultaneous profiles of all elements

Accessible depth range ~ 1pm
Light elements detectable on heavy substrates

03/05/2017 E. Vittone: lon Beam Based Techniques for Materials Science
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Response = x-ray

[IBA-PIXE]
Particle (proton) induced x-ray emission
Incident particle

The incident ion (typically protons) eject inner shell electrons from
The target atoms which results in the emission of characteristic x-rays

g Target

(Ca)

Beam llllllllllllll>

N /
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lonization cross-section

e

IONIZATION CROSS-SECTION (B)

Relaxation atomic processes

i Cl
10 -+ L
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U
’oeq
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10* 4 t
100 t+
1 + + 4 + + + +
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ENERGY (MeV)
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X-ray production cross sections

The efficiency of X-ray production is normally measured by the x-ray production cross-section. This is
the fictitious effective area that a single atom exposes to the beam assuming that each time a particle
enters that area an x-ray is produced. Units are barns (1 barn = 1024 cm?).

03/05/2017
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Figure 1.4 Plot of K, x-ray production cross sections
against incident proton energy for several common
elements.

10000 e =

1000} <
i
0}

Proton e nergy (MeV

section (barns)

L x-ray cross

Figure 1.5 Plot of L x-ray production cross-sections
against incident proton energy for several common
elements.

. VittorneTton Beam Based Technigques for Materiats Science

Note that typical RBS cross
sections are measured in barns
and nuclear reaction cross sections
are measured in millibarns.

PIXE is a very high yield
technique
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“Normal” PIXE spectrum

"3
~2

~%

4

aQ

2 4 6 8 10

PIXE spectrum of a thin protein sample acquired using 2.5 MeV protons.
This shows clear well-resolved peaks, a low energy bremsstrahlung peak
with a cut-off energy of around 5.5 keV (the theoretical value for 2.5MeV
protons) and a negligible background above this.

PIXE i1s capable of achieving detection limits around 1 part per million (w/w)

Using a microbeam (sampling volume 1 um?) this corresponds to an absolute
detection limit of around 10-8g (1 attogram, or around 10° atoms)

03/05/2017
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[IBA-PIXE} Thin samples

Total Yield of x-ray generated in a PIXE experiment

We will assume:
1. the sample is a very thin layer with N target atoms per cm?.

2. the beam has a flux of N protons per second (1.e. current, / = Ngze ampere)

3. we are irradiating uniformly an area of 4 cm? for a time  seconds (we will see that the irradiated
area cancels out).

The total effective x-ray production cross section in the irradiated area is then

AN, o (E)x 107 cm®  where oy, 1s the value of the x-ray cross section in barns

The number of beam particles per cm? is Ngt/A, so the total number of photons created is
N, =N,N, o, (E)x107*
or
N, =N_,Itc (E)x107™* /e
or

N, =N,Qc,(E)x107™ /e

Where O is the total beam charge in C and e is the electronic charge, 1.6x10"° C
03/05/2017 E. Vittone: lon Beam Based Techniques for Materials Science
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[IBA-PIXE} Thin samples

03/05/2017

Assuming that the X-rays are emitted isotropically and that the detector has a solid angle of (2
sr and an intrinsic efficiency of g(E,), the total number of detected X-rays 1s

N, =N,00 . (E)Qe(E,)x10™" / 4re

This can be written in terms of the areal density of the target atoms, m pg cm as follows:
N, = mQY(E}QE(EI)
where

o, (E)x107™

drreAm,

Y(E)= ~3x10° X (£) counts/zC/ugem™/sr

where Amp 1s the mass of the target atom.

Y is the thin target PIXE yield. This is a function of the Z and A of the target atom, the type
and energy of the incident ion and the measured X-ray transition.

Typical values (e.g. for Ca Ka X-rays induced by 3MeV protons) are ~10° cts/uC/pgem=/sr

E. Vittone: lon Beam Based Techniques for Materials Science
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- Thick samples Absorption of the emitted x-ray

At depth x:
« Proton energy, E(x) depends on EO, x and stopping
energy EO 2 . :
( gy EO) detectqfr’ » X-ray production cross section, @, depends on E(x) and
d Z

* Absorption of emitted x-ray depends on the X-ray mass

absorption coefficient, |1, of M, the energy of the xray
and the angle of the detector

dN, =KQc,0.(Z, E)QS(EE)E’XP[—H(M:. E,) xg)dx
COS

where c, is now the mass fraction of Z in the matrix

Software Packages
AXIL, GEOPIXE Il, PIXYKLM, GUPIX/Dan32
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{'BA—P'XE} PIXE Advantages

* Rapid, sensitive and non - destructive analyses

e Quantitative analysis; LOW DETECTION LIMIT

* Minimum detectable x-ray energy: 1 keV —All the elements with Z>11 can be
simultaneously detected

* PIXE is the analogon to Energy Dispersive X-ray analysis (EDX) with electron microprobe.

* Trace element analysis using PIXE has a detection limit orders of magnitude lower than
can be attainable by x-ray spectrometry techniques using electron excitation.

* Under favorable conditions, a detection limit ~1 ppm for thin foils and ~10 ppm for thick
samples can be achieved.

http://indico.ictp.it/event/a05196/session/16/contribution/8/material/0/0.pdf



http://indico.ictp.it/event/a05196/session/16/contribution/8/material/0/0.pdf

['BA'P'XE} Sources of background:

Primary proton bremsstrahlung ! ~AFI R,
High mass of protons means that they have very small deflection at each electron '

collision. This means that primary bremsstrahlung is essentially absent. .
50 keV electrons in PMMA

3 MeV protons in PMMA

Secondary electron bremsstrahlung (SEB)

» The electron removed by ionisation may either collide with nearby electrons and eventually stop, or
execute an orbit returning to its parent atom (synchrotron radiation). In each case bremsstrahlung is
emitted.

» The maximum energy that can be transferred to an electron in a proton-electron collision is or about 6.5
keV for 3MeV protons. This means that SEB only affects the lower energy part of the spectrum.

» SEB is a secondary process! The number of secondary electrons created is orders of magnitude lower
than the number of primary particles

03/05/2017 E. Vittone: lon Beam Based Techniques for Materials Science 37



e

Very low background (no primary

bremsstrahlung), so ppm
detection limits

03/05/2017

105 "

20 keV
Electrons

1041} (EDX)

Counts / ch

3 MeV Pb_,

Protons
(PIXE)

X-ray Energy / keV

. 12 Comparison of PIXE and EDX. PIXE is generally approx. 100 times more sensitive.
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Uniersity of Florence - LABEC

External Beam

Application in cultural heritage
Non vacuum-compatible objects
(e.g. biological samples)

www.le.infn.it/ifae/PDF/N.Grassi-UltimaVersione.pdf
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http://www.le.infn.it/ifae/PDF/N.Grassi-UltimaVersione.pdf
http://slideplayer.com/slide/10496042/

[IBA-P'XE} Differential PIXE

Measurements on the same spot
with different beam energies

Wooden tablet with a plaster base and Painted
with layers of different thickness of lapis lazuli

03/05/2017
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Elements

Al-U

Standard Conditions

3 MeV proton beam
Si(L1). Ge detector
10 munutes per sample

Precision Stoichiometry: 5% relative

Generally used for trace element analysis

Absolute concentrations mainly by calibration standards
Sensitivity 1 to 100 ppm. depending on Z and matrix

Depth Resolution

No depth information

Remarks

Probed depth 1s tens of um
Often used with raster imaging (proton microprobe)

Summary of PIXE

* High yield (rapid!) trace element analysis

* Detects all elements simultaneously
» Element range set by detector response: typically Na — U

* Very low background (no primary bremsstrahlung), so ppm
detection limits

* Yield can be calculated from fundamental physics, so you
can get good accuracy with a minimal dependence on
standard reference materials.
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Technique Measured Spatial Depth Detectable Detection | Quantitativity

signal Resolution | resolution elements sensitivity | (%)
(pm) (um) (2) (wppm)
PIXE X-rays 0.3 5 >11 0.1 5
RBS Backscattered 0.5 0.02 >2 1 3
ions
NRA Charged particle 1 0.005 All low Z 0.01 3
reaction
products
ERDA Forward >1 0.005 <15 500 3
scattered
sample ions
SIMS Sample ions 0.05 0.005 All 0.001-10 50
AES Auger electrons 0.1 0.001 >2 10000 50
XPS Photoelectrons 1000 0.002 >2 1000 50
EDS X-rays 0.5 1 >6 100 1
XRF X-rays 3 5 >11 1 5
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